Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14565, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421095

RESUMEN

AIM: Widely used second-generation antipsychotics are associated with adverse metabolic effects, contributing to increased cardiovascular mortality. To develop strategies to prevent or treat adverse metabolic effects, preclinical models have a clear role in uncovering underlying molecular mechanisms. However, with few exceptions, preclinical studies have been performed in healthy animals, neglecting the contribution of dysmetabolic features inherent to psychotic disorders. METHODS: In this study, methylazoxymethanol acetate (MAM) was prenatally administered to pregnant Sprague-Dawley rats at gestational day 17 to induce a well-validated neurodevelopmental model of schizophrenia mimicking its assumed pathogenesis with persistent phenotype. Against this background, the dysmetabolic effects of acute treatment with olanzapine and haloperidol were examined in female rats. RESULTS: Prenatally MAM-exposed animals exhibited several metabolic features, including lipid disturbances. Half of the MAM rats exposed to olanzapine had pronounced serum lipid profile alteration compared to non-MAM controls, interpreted as a reflection of a delicate MAM-induced metabolic balance disrupted by olanzapine. In accordance with the drugs' clinical metabolic profiles, olanzapine-associated dysmetabolic effects were more pronounced than haloperidol-associated dysmetabolic effects in non-MAM rats and rats exposed to MAM. CONCLUSION: Our results demonstrate metabolic vulnerability in female prenatally MAM-exposed rats, indicating that findings from healthy animals likely provide an underestimated impression of metabolic dysfunction associated with antipsychotics. In the context of metabolic disturbances, neurodevelopmental models possess a relevant background, and the search for adequate animal models should receive more attention within the field of experimental psychopharmacology.


Asunto(s)
Antipsicóticos , Haloperidol , Acetato de Metilazoximetanol/análogos & derivados , Embarazo , Ratas , Femenino , Animales , Haloperidol/toxicidad , Acetato de Metilazoximetanol/toxicidad , Olanzapina/toxicidad , Ratas Sprague-Dawley , Antipsicóticos/uso terapéutico , Lípidos , Modelos Animales de Enfermedad
2.
Biology (Basel) ; 13(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38248471

RESUMEN

The issue of bone volume loss is playing an increasing role in bone tissue engineering. Research has focused on studying the preparation and use of different types of human or xenogenic materials and their osteogenic properties. An alternative source for this purpose could be autologous extracted teeth. The simple preparation protocol, minimal immune response, and rapid organizing of the newly formed bone with optimal mechanical properties predispose autologous hard teeth tissues (HTTs) as a promising material suitable in the indication of augmentation of maxillary and mandible defects, comparable to other high-end augmentation materials. The aim of this study was to experimentally evaluate the osteogenic potential of ground native autologous HTTs prepared by different demineralization procedures, aimed at potentiating the osteoinductive and osteoconductive properties of their organic components. The results indicate that the most effective preparation process for HTT stimulation is the application of Cleanser for 10 min followed by exposure to 0.6 N HCl for 5 min with a wash in phosphate-buffered saline solution.

3.
J Mol Cell Cardiol ; 186: 71-80, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956903

RESUMEN

Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Cardiomiopatías/metabolismo
4.
Am J Physiol Endocrinol Metab ; 325(5): E562-E580, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792298

RESUMEN

In this study, we aimed to comprehensively characterize the proteomic landscapes of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in patients with severe obesity, to establish their associations with clinical characteristics, and to identify potential serum protein biomarkers indicative of tissue-specific alterations or metabolic states. We conducted a cross-sectional analysis of 32 patients with severe obesity (16 males and 16 females) of Central European descent who underwent bariatric surgery. Clinical parameters and body composition were assessed using dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance, with 15 patients diagnosed with type 2 diabetes (T2D) and 17 with hypertension. Paired SAT and VAT samples, along with serum samples, were subjected to state-of-the-art proteomics liquid chromatography-mass spectrometry (LC-MS). Our analysis identified 7,284 proteins across SAT and VAT, with 1,249 differentially expressed proteins between the tissues and 1,206 proteins identified in serum. Correlation analyses between differential protein expression and clinical traits suggest a significant role of SAT in the pathogenesis of obesity and related metabolic complications. Specifically, the SAT proteomic profile revealed marked alterations in metabolic pathways and processes contributing to tissue fibrosis and inflammation. Although we do not establish a definitive causal relationship, it appears that VAT might respond to SAT metabolic dysfunction by potentially enhancing mitochondrial activity and expanding its capacity. However, when this adaptive response is exceeded, it could possibly contribute to insulin resistance (IR) and in some cases, it may be associated with the progression to T2D. Our findings provide critical insights into the molecular foundations of SAT and VAT in obesity and may inform the development of targeted therapeutic strategies.NEW & NOTEWORTHY This study provides insights into distinct proteomic profiles of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and serum in patients with severe obesity and their associations with clinical traits and body composition. It underscores SAT's crucial role in obesity development and related complications, such as insulin resistance (IR) and type 2 diabetes (T2D). Our findings emphasize the importance of understanding the SAT and VAT balance in energy homeostasis, proteostasis, and the potential role of SAT capacity in the development of metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Obesidad Mórbida , Masculino , Femenino , Humanos , Obesidad Mórbida/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estudios Transversales , Proteómica , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Grasa Subcutánea/metabolismo , Biomarcadores/metabolismo , Proteínas/metabolismo , Grasa Intraabdominal/metabolismo
5.
Psychoneuroendocrinology ; 158: 106382, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37708823

RESUMEN

Many animals react to threatening stimuli such as a predator attacks by freezing. However, little experimental research investigated freeze response in humans. Here, we have employed practices commonly used in self-defense training to create two unique scenarios simulating armed physical threat. Sixty healthy men volunteers divided into three groups of twenty (untrained, trained but unexperienced, trained and experienced) underwent these scenarios accompanied by measurement of biochemical, physiological, and psychological markers of stress. Our results show that untrained individuals exhibit stronger freezing reactions, while highly skilled participants display the lowest propensity for freezing, especially in high-intensity scenarios. Moreover, the study shows variations in anxiety levels and selected biomarkers, with cortisol and osteocalcin showing different patterns in low and high-intensity scenarios, and suggests a complex interplay between these factors, electrodermal activity, and stress perception.


Asunto(s)
Factores Biológicos , Autoimagen , Masculino , Animales , Humanos , Hidrocortisona , Estrés Psicológico/psicología
6.
J Physiol ; 601(17): 3847-3868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37470338

RESUMEN

Cardiac voltage-gated sodium (Na+ ) channels (Nav 1.5) are crucial for myocardial electrical excitation. Recent studies based on single-channel recordings have suggested that Na+ channels interact functionally and exhibit coupled gating. However, the analysis of such recordings frequently relies on manual interventions, which can lead to bias. Here, we developed an automated pipeline to de-trend and idealize single-channel currents, and assessed possible functional interactions in cell-attached patch clamp experiments in HEK293 cells expressing human Nav 1.5 channels as well as in adult mouse and rabbit ventricular cardiomyocytes. Our pipeline involved de-trending individual sweeps by linear optimization using a library of predefined functions, followed by digital filtering and baseline offset. Subsequently, the processed sweeps were idealized based on the idea that the ensemble average of the idealized current identified by thresholds between current levels reconstructs at best the ensemble average current from the de-trended sweeps. This reconstruction was achieved by non-linear optimization. To ascertain functional interactions, we examined the distribution of the numbers of open channels at every time point during the activation protocol and compared it to the distribution expected for independent channels. We also examined whether the channels tended to synchronize their openings and closings. However, we did not uncover any solid evidence of such interactions in our recordings. Rather, our results indicate that wild-type Nav 1.5 channels are independent entities or exhibit only very weak functional interactions that are probably irrelevant under physiological conditions. Nevertheless, our unbiased analysis will be important for further studies examining whether auxiliary proteins potentiate functional Na+ channel interactions. KEY POINTS: Nav 1.5 channels are critical for cardiac excitation. They are part of macromolecular interacting complexes, and it was previously suggested that two neighbouring channels may functionally interact and exhibit coupled gating. Manual interventions when processing single-channel recordings can lead to bias and inaccurate data interpretation. We developed an automated pipeline to de-trend and idealize single-channel currents and assessed possible functional interactions between Nav 1.5 channels in HEK293 cells and cardiomyocytes during activation protocols using the cell-attached patch clamp technique. In recordings consisting of up to 1000 sweeps from the same patch, our analysis did not reveal any evidence of functional interactions or coupled gating between wild-type Nav 1.5 channels. Our unbiased analysis may be useful in further studies examining how Na+ channel interactions are affected by mutations and auxiliary proteins.


Asunto(s)
Miocardio , Miocitos Cardíacos , Ratones , Humanos , Animales , Conejos , Células HEK293 , Miocitos Cardíacos/fisiología
7.
Chem Zvesti ; : 1-7, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37362796

RESUMEN

The first accelerator mass spectrometry (AMS) laboratory in the Czech Republic has been established and put into routine operation in February 2022. Here we briefly describe the facilities available, namely a 300 kV multi-isotope low-energy AMS system (MILEA) capable of determination 10Be, 14C, 26Al, 41Ca, 129I, isotopes of U, especially 236U, Pu and other actinoids, and accessories for 14C measurements, which include a gas interface system, a preparative gas chromatography system for compound-specific radiocarbon dating analysis, and an isotope-ratio mass spectrometer. The first results achieved for separation and measurement of the above radionuclides (except for 41Ca) are also reported, with the main focus on 14C measurements. A specimen breakdown of 729 graphitised samples analysed for 14C so far is presented, as well as a proof of measurement stability of the MILEA system obtained by analysis of radiocarbon standards and analytical blanks. For the other radionuclides, well proven or novel procedures for sample preparation and measurement are presented.

8.
Plants (Basel) ; 12(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050094

RESUMEN

A new species of Marsupella sect. Ustulatae Müll. Frib. ex R.M. Schust. is described following an integrated morphological and molecular-phylogenetic study which examined the recently found dioicous plants growing epilithically on acidic substrates in several mountain ranges of Portugal between Peneda-Gerês in the north and Serra da Monchique in the extreme south. Employed molecular markers (plastid trnF-trnT region and nuclear ribosomal ITS) confirmed the distinctness of the lineage from other currently recognized species in the section, and furthermore, previously neglected diversity within M. sprucei (Limpr.) Bernet was signaled. Although not yet confirmed outside Portugal, the newly reported species is probably not rare in the region and has likely been overlooked as M. funckii (F. Weber & D. Mohr) Dumort. or M. profunda Lindb. in the past.

10.
Plants (Basel) ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36987046

RESUMEN

The recent molecular phylogenetic study of the families Aongstroemiaceae and Dicranellaceae, which resolved the genera Aongstroemia and Dicranella as polyphyletic, indicated the need for changes in their circumscription and provided new morphological evidence to support the formal description of newly recognized lineages. Following up on these results, the present study adds another molecular marker, the highly informative trnK-psbA region, to a subset of previously analyzed taxa and presents molecular data from newly analyzed austral representatives of Dicranella and collections of Dicranella-like plants from North Asia. The molecular data are linked with morphological traits, particularly the leaf shape, tuber morphology, and capsule and peristome characters. Based on this multi-proxy evidence, we propose three new families (Dicranellopsidaceae, Rhizogemmaceae, and Ruficaulaceae) and six new genera (Bryopalisotia, Calcidicranella, Dicranellopsis, Protoaongstroemia, Rhizogemma, and Ruficaulis) to accommodate the described species according to the revealed phylogenetic affinities. Additionally, we amend the circumscriptions of the families Aongstroemiaceae and Dicranellaceae, as well as the genera Aongstroemia and Dicranella. In addition to the monotypic Protoaongstroemia that contains the newly described dicranelloid plant with a 2-3-layered distal leaf portion from Pacific Russia, P. sachalinensis, Dicranella thermalis is described for a D. heteromalla-like plant from the same region. Fourteen new combinations, including one new status change, are proposed.

11.
PLoS Comput Biol ; 19(2): e1010895, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36791152

RESUMEN

The basic building blocks of the electrophysiology of cardiomyocytes are ion channels integrated in the cell membranes. Close to the ion channels there are very strong electrical and chemical gradients. However, these gradients extend for only a few nano-meters and are therefore commonly ignored in mathematical models. The full complexity of the dynamics is modelled by the Poisson-Nernst-Planck (PNP) equations but these equations must be solved using temporal and spatial scales of nano-seconds and nano-meters. Here we report solutions of the PNP equations in a fraction of two abuttal cells separated by a tiny extracellular space. We show that when only the potassium channels of the two cells are open, a stationary solution is reached with the well-known Debye layer close to the membranes. When the sodium channels of one of the cells are opened, a very strong and brief electrochemical wave emanates from the channels. If the extracellular space is sufficiently small and the number of sodium channels is sufficiently high, the wave extends all the way over to the neighboring cell and may therefore explain cardiac conduction even at very low levels of gap junctional coupling.


Asunto(s)
Canales Iónicos , Modelos Teóricos , Canales Iónicos/metabolismo , Membrana Celular/metabolismo , Canales de Potasio
12.
Cells ; 11(21)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359872

RESUMEN

Cardiac ephaptic coupling, a mechanism mediated by negative electric potentials occurring in the narrow intercellular clefts of intercalated discs, can influence action potential propagation by modulating the sodium current. Intercalated discs are highly tortuous due to the mingling of plicate and interplicate regions. To investigate the effect of their convoluted structure on ephaptic coupling, we refined our previous model of an intercalated disc and tested predefined folded geometries, which we parametrized by orientation, amplitude and number of folds. Ephaptic interactions (assessed by the minimal cleft potential and amplitude of the sodium currents) were reinforced by concentric folds. With increasing amplitude and number of concentric folds, the cleft potential became more negative during the sodium current transient. This is explained by the larger resistance between the cleft and the bulk extracellular space. In contrast, radial folds attenuated ephaptic interactions and led to a less negative cleft potential due to a decreased net cleft resistance. In conclusion, despite limitations inherent to the simplified geometries and sodium channel distributions investigated as well as simplifications regarding ion concentration changes, these results indicate that the folding pattern of intercalated discs modulates ephaptic coupling.


Asunto(s)
Corazón , Miocardio , Miocardio/metabolismo , Potenciales de Acción/fisiología , Sodio/metabolismo , Canales de Sodio
13.
Biology (Basel) ; 11(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36290432

RESUMEN

Oral health and diseases are greatly influenced by oral bacteria. During dysbiosis, bacterial composition changes, which can lead to periodontitis. Periodontitis in humans is associated with periodontal pathogens such as Treponema denticola, Porphyromonas gingivalis, Tannerella forsythia and Aggregatibacter actinomycetemcomitans. Animal-to-human transmission of some of these pathogens has also been reported. The aim of this study was to evaluate the prevalence of periodontal pathogens in Slovak patients and to assess the possible risk of transmission of these pathogens from animals to their owners. The presence of periodontal pathogens in dental plaque was monitored by PCR. Amplified products were analysed using Sanger sequencing. T. forsythia isolates were assessed for the susceptibility to different antibiotics using the disk diffusion method. In humans, T. denticola, P. gingivalis, T. forsythia and A. actinomycetemcomitans were present in 69.23%, 69.23%, 100% and 84.62%, respectively. Most isolates of T. forsythia were susceptible to amoxicillin-clavulanic acid, clindamycin and moxifloxacin, but they were resistant to metronidazole. The transmission of T. forsythia from animals to their owners was not proven based on sequence analysing. On the other hand, transmission of Porphyromonas gulae was confirmed, but the risk of its involvement in the pathogenesis of periodontitis in humans must be further investigated.

14.
Front Psychiatry ; 13: 893012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982931

RESUMEN

Objectives: Osteocalcin is a protein secreted by osteoblasts with a versatile endocrine role. Several domains in which it plays a role-stress response, monoamine synthesis, and cognitive functioning-are implicated also in the pathophysiology of major depressive disorder. In search of possible objective biomarkers of depression, the aim of the study was to assess the relationship between osteocalcin and depressive symptoms during the treatment of depressive episode. Methods: The study included female inpatients with at least moderate depressive episode. In these patients, depression severity was measured using the Montgomery-Åsberg Depression Rating Scale (MADRS), and osteocalcin levels were assessed before the stabilization of antidepressive treatment and after 6 weeks. Relationships between osteocalcin levels and symptoms were analyzed with mixed-effect and linear models, taking into account age, menopausal status, and body mass index. Results: In 11 out of 13 enrolled inpatients, osteocalcin levels decreased during the first 6 weeks of treatment; this decrease was significant according to the mixed-effects model (t = -2.345, p = 0.019). According to the linear model, this decrease was significantly associated with reduction in depressive symptom severity (t = 2.673, p = 0.028). Osteocalcin was not associated with initial depressive symptom severity, and initial osteocalcin levels did not predict response to treatment. Limitations of the study include low sample size and inclusion of both pre- and postmenopausal women of various ages. Conclusions: This preliminary study suggests that osteocalcin may be a candidate biomarker of antidepressive treatment response and that this topic warrants further investigation.

15.
Cell Prolif ; 55(10): e13310, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35920128

RESUMEN

OBJECTIVE: GDF11 is a member of the TGF-ß superfamily that was recently implicated as potential "rejuvenating" factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. METHODS: We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre-adipocyte cell lines. RESULTS: Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre-adipocytes by ALK5-SMAD2/3 activation in cooperation with the WNT/ß-catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. CONCLUSION: We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11-based "anti-obesity" therapy.


Asunto(s)
Adipogénesis , beta Catenina , Adipocitos/metabolismo , Adiponectina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Glucosa/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Insulina/metabolismo , Ratones , Receptor Tipo I de Factor de Crecimiento Transformador beta , Proteínas Smad Reguladas por Receptores , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
16.
J Physiol ; 600(14): 3287-3312, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35679256

RESUMEN

Cardiomyocyte cultures exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. In such preparations, beat rate variability exhibits features similar to those of heart rate variability in vivo. Mechanical deformations and forces feed back on the electrical properties of cardiomyocytes, but it is not fully elucidated how this mechano-electrical interplay affects beating variability in such preparations. Using stretchable microelectrode arrays, we assessed the effects of the myosin inhibitor blebbistatin and the non-selective stretch-activated channel blocker streptomycin on beating variability and on the response of neonatal or fetal murine ventricular cell cultures against deformation. Spontaneous electrical activity was recorded without stretch and upon predefined deformation protocols (5% uniaxial and 2% equibiaxial strain, applied repeatedly for 1 min every 3 min). Without stretch, spontaneous activity originated from the edge of the preparations, and its site of origin switched frequently in a complex manner across the cultures. Blebbistatin did not change mean beat rate, but it decreased the spatial complexity of spontaneous activity. In contrast, streptomycin did not exert any manifest effects. During the deformation protocols, beat rate increased transiently upon stretch but, paradoxically, also upon release. Blebbistatin attenuated the response to stretch, whereas this response was not affected by streptomycin. Therefore, our data support the notion that in a spontaneously firing network of cardiomyocytes, active force generation, rather than stretch-activated channels, is involved mechanistically in the complexity of the spatiotemporal patterns of spontaneous activity and in the stretch-induced acceleration of beating. KEY POINTS: Monolayer cultures of cardiac cells exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. Beating variability in these preparations recapitulates the power-law behaviour of heart rate variability in vivo. However, the effects of mechano-electrical feedback on beating variability are not yet fully understood. Using stretchable microelectrode arrays, we examined the effects of the contraction uncoupler blebbistatin and the non-specific stretch-activated channel blocker streptomycin on beating variability and on stretch-induced changes of beat rate. Without stretch, blebbistatin decreased the spatial complexity of beating variability, whereas streptomycin had no effects. Both stretch and release increased beat rate transiently; blebbistatin attenuated the increase of beat rate upon stretch, whereas streptomycin had no effects. Active force generation contributes to the complexity of spatiotemporal patterns of beating variability and to the increase of beat rate upon mechanical deformation. Our study contributes to the understanding of how mechano-electrical feedback influences heart rate variability.


Asunto(s)
Miocitos Cardíacos , Nodo Sinoatrial , Animales , Frecuencia Cardíaca/fisiología , Ratones , Microelectrodos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Estreptomicina/farmacología
17.
PeerJ ; 10: e13260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497188

RESUMEN

We present an integrative molecular and morphological study of subaquatic representatives of the genus Pseudohygrohypnum (Pylaisiaceae, Bryophyta), supplemented by distribution modelling of the revealed phylogenetic lineages. Phylogenetic analyses of nuclear and plastid datasets combined with the assemble species by automatic partitioning (ASAP) algorithm revealed eight distinct species within the traditionally circumscribed P. eugyrium and P. subeugyrium. These species are therefore yet another example of seemingly widely distributed taxa that harbour molecularly well-differentiated lineages with narrower distribution ranges. Studied accessions that were previously assigned to P. eugyrium form three clearly allopatric lineages, associated with temperate regions of Europe, eastern North America and eastern Asia. Remarkably, accessions falling under the current morphological concept of P. subeugyrium were shown to be even more diverse, containing five phylogenetic lineages. Three of these lineages occur under harsh Asian continental climates from cool-temperate to Arctic regions, while the remaining two, referred to P. subeugyrium s.str. and P. purpurascens, have more oceanic North Atlantic and East Asian distributions. Niche identity and similarity tests suggested no similarity in the distributions of the phylogenetically related lineages but revealed the identity of two East Asian species and the similarity of two pairs of unrelated species. A morphological survey confirmed the distinctness of all eight phylogenetic lineages, requiring the description of five new species. Pseudohygrohypnum appalachianum and P. orientale are described for North American and East Asian plants of P. eugyrium s.l., while P. sibiricum, P. subarcticum and P. neglectum are described for the three continental, predominantly Asian lineages of P. subeugyrium s.l. Our results highlight the importance of nontropical Asia as a center of bryophyte diversity. Phylogenic dating suggests that the diversification of subaquatic Pseudohygrohypnum lineages appeared in late Miocene, while mesophilous species of the genus split before Miocene cooling, in climatic conditions close to those where the ancestor of Pseudohygrohypnum appeared. We speculate that radiation of the P. subeugyrium complex in temperate Asia might have been driven by progressive cooling, aridification, and increases in seasonality, temperature and humidity gradients. Our results parallel those of several integrative taxonomic studies of North Asian mosses, which have resulted in a number of newly revealed species. These include various endemics from continental areas of Asia suggesting that the so-called Rapoport's rule of low diversity and wide distribution range in subpolar regions might not be applicable to bryophytes. Rather, the strong climatic oscillations in these regions may have served as a driving force of speciation and niche divergence.


Asunto(s)
Briófitas , Bryopsida , Filogenia , Filogeografía , Asia Oriental , Asia
18.
J Clin Endocrinol Metab ; 107(3): 755-775, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34669916

RESUMEN

CONTEXT: Adipose tissue distribution is a key factor influencing metabolic health and risk in obesity-associated comorbidities. OBJECTIVE: Here we aim to compare the proteomic profiles of mature adipocytes from different depots. METHODS: Abdominal subcutaneous (SA) and omental visceral adipocytes (VA) were isolated from paired adipose tissue biopsies obtained during bariatric surgery on 19 severely obese women (body mass index > 30 kg/m2) and analyzed using state-of-the-art mass spectrometry. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to investigate proteome signature properties and to examine a possible association of the protein expression with the clinical data. RESULTS: We identified 3686 protein groups and found 1140 differentially expressed proteins (adj. P value < 0.05), of which 576 proteins were upregulated in SA and 564 in VA samples. We provide a global protein profile of abdominal SA and omental VA, present the most differentially expressed pathways and processes distinguishing SA from VA, and correlate them with clinical and body composition data. We show that SA are significantly more active in processes linked to vesicular transport and secretion, and to increased lipid metabolism activity. Conversely, the expression of proteins involved in the mitochondrial energy metabolism and translational or biosynthetic activity is higher in VA. CONCLUSION: Our analysis represents a valuable resource of protein expression profiles in abdominal SA and omental VA, highlighting key differences in their role in obesity.


Asunto(s)
Adipocitos/metabolismo , Grasa Intraabdominal/metabolismo , Obesidad Mórbida/metabolismo , Grasa Subcutánea Abdominal/metabolismo , Adulto , Cirugía Bariátrica , Femenino , Redes Reguladoras de Genes , Humanos , Grasa Intraabdominal/citología , Grasa Intraabdominal/patología , Persona de Mediana Edad , Obesidad Mórbida/patología , Obesidad Mórbida/cirugía , Epiplón/citología , Epiplón/metabolismo , Epiplón/patología , Epiplón/cirugía , Proteómica , Grasa Subcutánea Abdominal/citología , Grasa Subcutánea Abdominal/patología
19.
J Physiol ; 599(21): 4779-4811, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34533834

RESUMEN

It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+ ) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre-junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post-junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. KEY POINTS: Ephaptic coupling is a cardiac conduction mechanism involving nanoscale-level interactions between the sodium (Na+ ) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.


Asunto(s)
Uniones Comunicantes , Sodio , Potenciales de Acción , Iones , Miocitos Cardíacos
20.
Elife ; 102021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33729158

RESUMEN

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation, and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here, we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.


Asunto(s)
Canales Iónicos Sensibles al Ácido/química , Conformación Molecular , Transducción de Señal , Humanos , Cinética , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...